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orientifolds of IIB theories compactified on Calabi-Yau spaces based on vanishing polyno-

mials in weighted projective spaces, and find that the suppression is quite substantial. On

the other hand, we find that a Z2 R-parity is a common feature in the landscape. We

discuss whether the cosmological constant and proton decay or cosmology might select the

low energy branch. We include also some remarks on split supersymmetry.
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1. Introduction

Recent studies of string configurations with fluxes have provided support for the idea that

string theory possesses a vast landscape of string [1 – 5]. In the landscape, three distinct

branches of states have been identified [6]. One branch has broken supersymmetry already

in the leading approximation. Another has unbroken supersymmetry at tree level, with

negative cosmological constant. A third has unbroken supersymmetry and vanishing cos-

mological constant at tree level. Non-perturbatively, we might expect that supersymmetry

breaking occurs generically in the latter two cases, so the distinctions between these states,

individually, are not sharp. However, the statistics of these three branches are quite dis-

tinct. The first, “non-supersymmetric branch” has a distribution of states which strongly

peaks at the highest energy scale; states with a low scale of supersymmetry breaking, m3/2,

are suppressed by m12
3/2 [7, 8]. The second, “intermediate scale branch”, has a distribution

of scales roughly logarithmic in m3/2,
∫ dm2

3/2

m2
3/2

ln(m3/2)
. The third, “low scale” branch will be

the focus of this paper. Here the distribution behaves as

∫ dm2
3/2

m4
3/2

. (1.1)
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For unbroken supersymmetry, vanishing of the cosmological constant implies the van-

ishing of W . Vanishing of W is often connected with R symmetries. R symmetries are

symmetries which transform the supercharges non-trivially. Among these, we can consider

two broad classes, those which transform the superpotential by a non-trivial phase, and

Z2 symmetries under which the superpotential is invariant. Conventional R-parity is an

example of the latter, and we will refer to such Z2 symmetries more generally as R-parities.

These are not, in any general way, connected with vanishing W . We will reserve the term

R symmetry for those symmetries which transform W . In [6] it was argued that states

on the low scale branch were likely to arise as a result of discrete R symmetries. In [8],

some aspects of these states were considered and some counting performed. In typical

constructions of flux vacua, an R symmetry can arise if the underlying theory, in the ab-

sence of fluxes, possesses such a symmetry, and if the non-vanishing fluxes are themselves

neutral under the symmetry. As explained in [8], for a reasonably generic superpotential

consistent with the symmetries, the potential has stationary points preserving both super-

symmetry and R symmetry1. This can be illustrated by compactification of the IIB theory

on an orientifold of the familiar quintic in CP 4. On a subspace of the moduli space, prior

to performing the orientifold projection, the quintic is known to possess a large discrete

symmetry, Z4
5 × S5 [12, 13]. The projection can preserve a subgroup of this group. It is

not difficult to classify the fluxes according to their transformation properties under these

symmetries2. If one tries to turn on fluxes in such a way as to preserve a single Z5, one

finds that it is necessary to set more than 2/3 of the fluxes to zero. In landscape terms,

this means that the dimensionality of the flux lattice is reduced by 2/3, and correspond-

ingly there is a drastic reduction in the number of states. One of the principle goals of the

present paper is to assess whether this sort of reduction is typical.

One of the observations of [8] is that in the bulk of R-symmetric states, supersymmetry

and R symmetry are likely to be unbroken. We will explain this observation further, and

discuss the assumptions on which it relies.

Discrete symmetries are of interest for other reasons. One of the most important is to

suppress proton decay. Usually one considers R parity, but more general R symmetries can

suppress not only dimension four but also dimension five operators. R parity is distinctive

in that it does not rotate the superpotential. As a result, it need not be spontaneously

broken (it does not forbid a mass for gauginos). It also does not lead to a non-vanishing

〈W 〉. So states on the intermediate branch can be R-parity-symmetric. We will discuss

the distinctions between R parity and R symmetries further in this paper.

R symmetries have received attention recently for another reason: they are part of the

rationale for the “split supersymmetry” scenario [14]. We will discuss a number of issues

related to this proposal here as well.

This paper is organized as follows. In the next section we will describe a counting

exercise based on Calabi-Yau models constructed as complete intersections in weighted

1In [9] and [10], explicit features of the superpotential [11] are employed to actually find and count

solutions with these properties
2We will correct an error in the identification of symmetries in [8], but this will not qualitatively alter

the earlier conclusions
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projective spaces. We will see that the results for the quintic are rather general: we find no

examples where more than 1/3 of the possible fluxes preserve an R symmetry. In section 3,

we verify our identification of discrete symmetries of these models by studying Gepner mod-

els [15]. In sections 4 and 5, we explain why supersymmetry and R symmetry are typically

unbroken in these states at the classical level, and consider non-perturbative effects which

can break these symmetries. In the final sections, we discuss split supersymmetry and R

parity. We explain why split supersymmetry seems an unlikely outcome of the landscape

and contrast R-parity and more general R symmetries. We conclude with a discussion of

selection effects which might favor one or another branch of the landscape.

2. R symmetries in weighted projective spaces

Already in [12, 13], the existence of discrete symmetries in Calabi-Yau spaces has been

noted. It is instructive to enumerate these symmetries before implementing the orientifold

projection. These symmetries can be thought of as discrete subgroups of the original

Lorentz invariance of the higher dimensional space. The quintic in CP 4 provides a familiar

example. The construction of the Clabi-Yau space begins with a choice of a vanishing

quintic polynomial. The polynomial

P =

5
∑

i=1

z5
i = 0 (2.1)

exhibits a large discrete symmetry. Each of the zi’s can be multiplied by α = e
2πi
5 . In

addition, there is a permutation symmetry which exchanges the zi’s. To see that these are

R symmetries, one can proceed in various ways. One can, first, construct the holomorphic

three form. Defining variables xi = zi/z5, this can be taken to be [13]:

Ω = dx1dx2dx3

(

∂P

∂x4

)−1

. (2.2)

It is easy to check that as long as dP
dzi

6= 0, i = 1, . . . , 5 (the transversality condition) this

formula is “democratic”; the singling out of z4 and z5 is not important. Ω transforms under

any symmetry like the superpotential. This follows from the fact that ΩIJK = ηT ΓIJKη,

where η is the covariantly constant spinor. So we can read off immediately that under,

say, z1 → αz1, the superpotential transforms as W → αW . Similarly, under an odd

permutation, the superpotential is odd.

The complex structure moduli are in one to one correspondence with deformations

of the polynomial P , so it is easy to determine their transformation properties under the

discrete symmetry. Overall, there are 101 independent polynomials. So, for example, the

polynomial z3
1z2

2 transforms as α3 under the symmetry above. z4
1z5, on the other hand, is

not an independent deformation, since it can be absorbed in a holomorphic redefinition of

the zi’s. For the landscape, it is also important to understand how the possible fluxes trans-

form: fluxes are paired with complex structure moduli. Because they correspond to RR

states, they transform differently than the scalar components of the moduli. As we explain
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below, the criterion that a flux not break and R symmetry is that the corresponding mod-

ulus transform under the symmetry like the holomorphic 3 form. The effective lagrangian

for the light fields will exhibit a symmetry if all fluxes which transform non-trivially vanish.

To see how the transformation properties of the fluxes relate to those of the moduli, we

can proceed by using equation 2.2 to construct the holomorphic three form. If we deform

the polynomial by P → P + ψ h(zi), then:

δΩ = dx1 ∧ dx2 ∧ dx3 ψ
∂h

∂x4

(

∂P

∂x4

)−2

. (2.3)

If this is to be invariant, the transformation of h must compensate that of dx1 . . . dx4 Since

h transforms like ψ, we see that ψ must transform like Ω.

So in the case of the quintic, consider the transformation z1 → αz1, where α = e
2πi
5 .

Under this transformation, Ω transforms like α. So the invariant fluxes correspond to

polynomials with a single z1 factor. Examples include z1z
2
2z3, z1z

2
2z2

3 and z1z2z3z4z5.

Altogether, of the 101 independent polynomial deformations, 31 transform properly.

However, we need to consider the orientifold projection. In the IIB theory, this pro-

jection takes the form [16]:

O = (−1)FLΩpσ
∗ σ∗Ω = −Ω. (2.4)

Here Ωp is orientation reversal on the world sheet; σ is a space-time symmetry transfor-

mation. In the case of the quintic, a suitable Z2 transformation can be found among the

various permutations. An example is the cyclic transformation:

z2 → z3 z3 → z4 z4 → z5 z5 → z2. (2.5)

There are 27 polynomials invariant under this symmetry, so h2,1 is reduced from 101 to

27. The number of fluxes which are invariant under the symmetry is reduced to 9. This is

only 1/3 of the total.

In the flux landscape, it is the fact that there are a large number of possible fluxes

which accounts for the vast number of states. If one thinks of the fluxes as forming a

spherical lattice, it is the large radius of the sphere and the large dimension of the space

which account for the huge number of states. Reducing the dimensionality significantly

drastically reduces the number of states; e.g. if 2/3 of the fluxes must be set to zero, 10300

states becomes 10100. In the case of the quintic, we we have just seen that requiring, for

example, the z1 → αz1 symmetry requires that more than 1/3 of the fluxes vanish. In

the end, though, the dimension of the flux lattice was not so large in this case. A natural

question is whether such a large fractional reduction in the dimensionality of the lattice is

typical.

A large class of Calabi-Yau spaces have been constructed as hypersurfaces in weighted

projective spaces [17]. The corresponding polynomials can exhibit complicated sets of

discrete symmetries. Here we will consider some examples chosen from the list.

A case in which there is a large number of fluxes even after the orientifold projection is

provided by WCP 4
1,1,1,6,9[18]. This model is, for a particular radius and choice of polyno-

mial, one of the Gepner models [15] and so we have more than one check on our analysis.

– 4 –
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Take the polynomial to be:

P = z18
1 + z18

2 + z18
3 + z3

4 + z2
5 = 0. (2.6)

Then there are h2,1 = 272 independent deformations of the polynomial. There is also a

rich set of discrete symmetries:

Z3
18 × Z3 × Z2 × S3. (2.7)

One can construct Ω as in eq. 2.2; one finds that under z1 → e
2πi
18 z1, Ω transforms as:

Ω → e
2πi
18 Ω, (2.8)

and similarly for the other coordinates. In particular, Ω → −Ω under the transformation

z5 → −z5. Now all of the polynomials are invariant under the Z5. Any polynomial linear

in z5 can be absorbed into a redefinition of z5 (just as the z4
i zj type polynomials to not

correspond to physical deformations in the case of the quintic). So all of the fluxes are odd

under the symmetry. So if we take this to be the σ of the orientifold projection, then all

of the complex structure moduli and the fluxes survive.

Now we want to ask: what fraction of the fluxes preserve a discrete symmetry of the

orientifold theory. Consider, for example, z4 → e
2πi
3 z4. Invariant fluxes are paired with

polynomial deformations linear in z4. There are 55 such polynomials. So, as in the case

of the quintic, approximately 1/3 of the fluxes are invariant under the symmetry. Indeed,

surveying numerous models and many symmetries, we have found no examples in which 1/2

or more of the fluxes are invariant. The model WCP 4
1,1,1,6,9[18] is particularly interesting,

since it has the largest h2,1 in this class.

In the next section, to confirm our identification of these symmetries, we discuss R

symmetries in the Gepner models.

3. Identifying R symmetries in the Gepner models

A number of the models in weighted projective spaces have realizations as Gepner mod-

els [15]. These provide a useful laboratory to check our identification of symmetries and

field transformation properties. We adopt the notation of [18]. States of the full theory

are products of states of N = 2 minimal models with level P. These are labelled:

(

`
q s

q̄ s̄

)

(3.1)

Here ` = 0, . . . , P , and ` + q + s = 0 mod 2. The right-moving conformal weight and U(1)

charge are:

h =
1
4`(` + 2) − q2/4

(P + 2)
+

1

8
s2; Q =

−q

P + 2
+

1

2
s. (3.2)

and similarly for the left movers. Each of the minimal models has a ZP+2 symmetry; states

transform with a phase:

e−
iπ(q+q̄)

P+2 (3.3)

– 5 –
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The right-moving supersymmetry operator is a product of operators in each of the minimal

models of the form:

S =

(

0
1 1

0̄ 0̄

)

. (3.4)

From this we can immediately read off the transformation properties of S under the discrete

symmetries, and determine whether or not the symmetries are R symmetries.

The quintic in CP 4 is described by a product of 5 models with P = 3. Following

Gepner, we can identify the complex structure moduli associated with various deformations

of the symmetric polynomial by considering their transformation properties under the

discrete symmetries. So, for example, the polynomial z3
1z2 is identified with the state:

(

3
3 0

3 0

) (

2
2 0

2 0

)(

0
0 0

0 0

)3

. (3.5)

One can enumerate all of the states in this way, and repeat the counting we did before.

Now consider the model WCP 4
1,1,1,6,9[18], with the polynomial of equation 2.6. For

a particular choice of radius, this is described by the Gepner model which is the product

(16, 16, 16, 1). We see that the symmetry is Z18 ×Z18 ×Z18 ×Z3. The Z2 which takes the

coordinate Z5 of the weighted projective space into minus itself, z5 → −z5, is equivalent,

because of the identifications of the weighted projective space, to the transformation:

z1,2,3 → e
2πi
18 z1,2,3 z4 → e

2πi
3 z4. (3.6)

This is an R symmetry; it multiplies S2
α, and hence the superpotential, by −1. Again

we can enumerate the states. For example, the polynomial z16
1 z2

2 is identified with the

operator:
(

16
16 0

16 0

)(

2
2 0

2 0

)(

0
0 0

0 0

)3

. (3.7)

This is clearly invariant under the symmetry above. It is a simple matter to enumerate all

of the possible states and check that they are invariant.

So, as we stated earlier, all of the fluxes are invariant under the Z2, since the scalar

moduli are odd. It is a simple matter to check that the supercharges transform by −1

under the R parity symmetry we identified earlier, and to reproduce our counting for the

Z18 symmetry as well.

It is particularly easy to survey models which have realizations as Gepner models.

We have found no examples where more than 1/3 of the fluxes are invariant under an R

symmetry.

4. Supersymmetry and R-symmetry breaking at tree level

One can ask whether in a theory with R symmetries, supersymmetry and R symmetry are

spontaneously broken. We have seen that invariant fluxes are paired with moduli which

transform like the superpotential. We have also seen that typically less than 1/2 of the

moduli transform in these way.

– 6 –
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Call Xi, i = 1, . . . N , those moduli which transform like the superpotential under R

symmetries. Denoting the other fields by Ya, These break into two groups: those invari-

ant under the R symmetry, φα, α = 1, . . . P , and those which transform in some way,

χr. Including terms at most linear in fields which transform under the R symmetry, the

superpotential has the form:

W =

N
∑

i=1

Xifi(φα) (4.1)

If N ≤ P , then provided that the fi’s are reasonably generic functions, the equations

fi = 0 have solutions, so there are vacua with Xi = fi = 0, and supersymmetry and the

R symmetry are unbroken. Consider our example based on WCP 4
1,1,1,6,9[18]. We studied

there the Z3 symmetry, z4 → e
2πi
3 z4, and saw that there are 55 Xi fields, i.e. N=55..

There are many more φ fields (corresponding to polynomials with no z4); P = 217. So

among the fluxes which are invariant under the symmetry, generically one expects to find

supersymmetric, R symmetric stationary points of the action. Another symmetry one can

study is the symmetry z1 → e
2πi
18 z1. There are 28 fluxes invariant under the symmetry,

and correspondingly N = 28 (these are all of the polynomials linear in z1). It turns out

that there are 28 polynomials invariant under the symmetry. So in this case, N = P ,

and again one expects R-symmetric, supersymmetric solutions. What is striking is that if

one does find vacua with N close to h2,1, so that there might not be a huge suppression,

supersymmetry and/or R symmetry typically will be broken. This situation, if it occurs,

might be relevant to the ideas of split supersymmetry, which we discuss further below.

5. Non-perturbative mechanisms for supersymmetry and R-symmetry

breaking

We have seen that discrete R symmetries tend to give solutions of the classical equa-

tions with unbroken supersymmetry and vanishing W (and hence vanishing cosmological

constant) with very mild assumptions about the form of the superpotential. Even if super-

symmetry and R symmetry are unbroken at the level of the classical analysis, one expects

that generically they will be broken by quantum effects. We can speculate on a num-

ber of breaking mechanisms. First, discrete symmetries may suffer from non-perturbative

anomalies [19]. As a result, non-perturbative effects can generate an explicit violation of

the symmetry. In generic states in the landscape, the couplings are presumably strong,

so there is no real sense in which the theory possesses such a symmetry at all. But in a

significant subset, these effects may be small (e.g. exponential in small couplings). Such

effects could, in addition to breaking the R symmetry, break supersymmetry and generate

positive and negative contributions to the cosmological constant.

Another possibility is that the R symmetry might be broken spontaneously by low

energy dynamics.3 Gaugino condensation is an obvious example, which spontaneously

3Because the discrete symmetries are gauge symmetries, the distinction between explicit and spontaneous

breaking has limited meaning, but the terminology is useful here nevertheless.

– 7 –
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breaks any R symmetry. Models of dynamical supersymmetry breaking generically break

R symmetries as well.

All of these effects are typically exponentially small as some coupling goes to zero. As

a result, the scales of supersymmetry and R symmetry breaking tend to be distributed

roughly uniformly on a log scale. This was the basis of the argument of [6] for the distri-

bution of states on this branch.

6. Observations on split supersymmetry

The authors of [14] made the interesting observation that if one simply removes the squarks

and sleptons from the MSSM, coupling unification works as well or better than if these

fields are at the TeV scale. They suggested that such a splitting of the spectrum might

be typical of the landscape. For example, we are used to the idea that fermion masses are

often protected by chiral symmetries, while something like supersymmetry is required to

protect scalar masses.

Upon further thought, however, there is a problem with this idea. The fermions whose

masses one wants to protect are the gauginos. In N = 1 theories, the only symmetries

which can protect gaugino masses are R symmetries. But in the context of supergravity, if

supersymmetry breaking is large and the cosmological constant is small, the R symmetry

is necessarily badly broken by the non-vanishing expectation value of the superpotential.

At best, one expects that gaugino masses will be suppressed relative to squark masses by a

loop factor. Ref. [14] constructed field theory models with larger suppression, but it is not

clear that the features of these models are typical of regions of the landscape. One could

speculate that there might be some anthropic selection for a dark matter particle, but this

would at best explain why one gaugino was tuned to be light, not the three required for

successful unification.

We have seen, in addition, that the studies of IIB vacua suggest that in the bulk of

R-symmetric states, supersymmetry and R symmetry are likely to be unbroken at tree

level, and the statistics of these states suggests that the vast majority of states with small

cosmological constant will have small supersymmetry and R symmetry breaking. One can

legitimately object that the IIB states might not be suitably representative. In particular,

this argument relies crucially on a pairing of moduli and fluxes, which might not hold in

all regions of the landscape.

Suppose we do find R symmetric flux configurations for which the superpotential does

not have R-symmetric, supersymmetric stationary points (i.e. configurations for which

there are more X-type than φ-type moduli). Let’s ask how natural it might be to preserve

the R symmetry if supersymmetry is broken. Usually, preservation of a symmetry is

technically natural, since it is simply a question of a sign of a particular term in an effective

action. In the case of the landscape, however, where there are many fields, preserving

a symmetry requires that many terms in the action have the same sign. The authors

of [14] discuss this issue in some toy models, where perturbative corrections all have the

same sign. In the framework of supergravity models, already at the classical (tree) level,

potentials for the moduli appear, and one can ask what happens. We have not performed

– 8 –
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a general analysis, but as a toy model, have considered the T6/Z2 orientifold, where the

Kahler potential can be written explicitly. With various assumptions about supersymmetry

breaking, one typically finds that at stationary points of the potential with unbroken R

symmetry, some moduli transforming under the symmetry have negative masses, some

positive masses.

In any case, in order to understand the smallness of the cosmological constant, at least

within any semiclassical analysis, it is necessary that the R symmetry be very badly broken

so that 〈W 〉 is large.

7. R parity

We have seen that R symmetries are quite costly in the landscape. Only a tiny fraction

of states in the flux vacua respect any R symmetry. R parity is different, however. In

many cases, there is an R parity which is respected by all of the fluxes. Consider, again,

WCP 4
1,1,1,6,9[18]. We study the Z2 symmetry:

zi → e
4πi
9 zi, i = 1 . . . 3; z4 → e

2πi
3 z4. (7.1)

Under this symmetry, Ω is invariant, but the supercharges transform with a −1 (this is

clear from our formulas for the Gepner version of the model). Because Ω is invariant, fluxes

are invariant if the corresponding polynomial is invariant. It is easy to check that every

polynomial is invariant under the Z2. (These symmetry properties are readily checked in

the Gepner construction as well). This sort of symmetry appears in many of the models.

Such Z2 R parity does not lead to W = 0 vacua. The typical state in this case lies

on the intermediate scale or high scale branch of the landscape (W 6= 0, supersymmetry

broken or unbroken). So R parity is a common feature of the intermediate scale branch of

the landscape.

8. Conclusions: phenomenology on the low energy branch of the landscape

It would be exciting if one could argue that the low energy branch of the landscape were

favored. This branch is likely to have a phenomenology similar to that of gauge-mediated

models. However, we have seen that R symmetry is rather rare in the landscape, even as

R parity is common. We can ask whether there are effects which might select for the low

energy branch. Possibilities include:

1. The cosmological constant: on the low energy branch, very low scales for supersym-

metry breaking are favored. So many fewer states are required than on the other

branches to obtain a suitably small cosmological constant. If one supposes that the

supersymmetry breaking scale is, say, 10 TeV, while that on the intermediate scale

branch is 1011 GeV, one needs 1028 fewer states. But our analysis here suggestions

that the suppression of states on the low energy branch is far larger.

2. Proton decay: R symmetries can account for the absence of proton decay. But we

have seen R parity is much more common than R parity, so the latter would seem a

more plausible resolution to the problem of proton decay.
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3. Cosmology: The low energy branch has a severe cosmological moduli problem. If

SUSY is broken at, say, 100 TeV, the moduli are extremely light and dominate the

energy density of the universe at very early times. This leads to too much dark

matter, and it is likely that this is selected against.

All of these considerations strongly suggest that the low energy branch of the landscape

is disfavored. We have given elsewhere arguments which might favor the intermediate scale

branch, and explored its phenomenology [20]. The recognition that R parity is common

provides further support for this branch.
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